Science and technology in China

From Dharmapedia Wiki
Jump to navigation Jump to search
This is about the contemporary People's Republic of China. For times predating 1949, see History of science and technology in China.
File:Donghai Bridge.jpg
Donghai Bridge
File:Yangshan-Port-Containers.jpg
Building infrastructure has been a major task for Chinese engineering during the past decades. This is the 32.5-kilometre (20.2 mi) Donghai Bridge, connecting mainland Shanghai to the offshore Yangshan Port – one part of the Port of Shanghai, the world's busiest container port.

Science and technology have developed rapidly in China during the 1990s to 2010s. The Chinese government has placed emphasis through funding, reform, and societal status on science and technology as a fundamental part of the socio-economic development of the country as well as for national prestige. China has made rapid advances in areas such as education, infrastructure, high-tech manufacturing, academic publishing, patents, and commercial applications and is now in some areas and by some measures a world leader. China is now increasingly targeting indigenous innovation and aims to reform remaining weaknesses.

History[edit]

File:Ming-marine-compass.jpg
Diagram of a mariner's compass from the Ming Dynasty.
File:Yuan chinese gun.jpg
Handgun from the Yuan Dynasty.

China was a world leader in science and technology until the early years of the Qing Dynasty. Chinese discoveries and Chinese innovations such as papermaking, printing, the compass, and gunpowder (the Four Great Inventions) contributed to the economic development in Asia and Europe. Chinese activity started to decrease in the fourteenth century. Unlike in Europe scientists did not attempt to reduce observations of nature to mathematical laws and they did not form a scholarly community with criticisms and progressive research. There was an increasing concentration on literature, arts, and public administration while science and technology were seen as trivial or restricted to limited practical applications.[1] The causes of this Great Divergence continue to be debated. One factor is argued to be the imperial examination system which removed the incentives for Chinese intellectuals to learn mathematics or to conduct experimentation.[2]

After being defeated repeatedly by Western nations in the 19th century, Chinese reformers began promoting modern science and technology as part of the Self-Strengthening Movement. After the Communist victory in 1949 science and technology research was organized based on the model of the Soviet Union. It was characterized by a bureaucratic organization led by non-scientists, research according to the goals of central plans, separation of research from production, specialized research institutes, concentration on practical applications, and restrictions on information flows. Researchers should work as collectives for society rather than as individuals seeking recognition. Many studied in the Soviet Union which also transferred technology. The Cultural revolution, which sought to remove perceived "bourgeois" influences and attitudes, caused large negative effects and disruptions. Among other measures it saw the scientific community and formal education attacked, intellectuals were sent to do manual labor, universities and academic journals were closed, most research ceased, and for nearly a decade China trained no new scientists and engineers.[1]

After Mao Zedong's death, S&T was established as one of the Four Modernizations in 1976. The new leader Deng Xiaoping, and architect of the Chinese economic reform, was a strong promoter of S&T and reversed the policies of the Cultural revolution. The Soviet inspired system was then gradually reformed. Media began promoting the value of S&T, scientific thinking, and scientific achievement.[1] The third and fourth generations of leaders came almost exclusively from technical backgrounds.

The State Council of the People's Republic of China in 1995 issued the "Decision on Accelerating S&T Development" which described planned Science & Technology development for the coming decades. It described S&T as the chief productive force and affecting economic development, social progress, national strength, and living standards. S&T should become closely associated with market needs. Not only Soviet style institutes should do research but also universities and private industries. State institutions should form joint ventures with Chinese or foreign venture capital in order for S&T developments to reach the industry. S&T personal should become more occupationally mobile, pay should be linked to economic results, and age and seniority should become less important for personal decisions. Intellectual property rights should be respected. Information exchange should improve and there should be competition and open bidding on projects. The environment should be protected. Chinese indigenous S&T in certain key areas should be especially promoted. Public officials should improve their understanding of S&T and incorporate S&T in decision making. Society, including Communist Party youth organizations, labor unions and the mass media, should actively promote respect for knowledge and human talents.[3]

During the last 30 years China concentrated on building physical infrastructure such as roads and ports. One policy during the last decade has been to ask for technology transfer in order for foreign companies to gain access to the Chinese market. China is now increasingly targeting indigenous innovation.[4] During this period China has succeeded in developing an innovation infrastructure, founded on the establishment of over 100 science and technology parks in many parts of the country, along with encouragement of entrepreneurship outside the state-owned sector. Yip and McKern argue that Chinese firms have evolved through three phases as their innovation capabilities have matured and that by 2017 many of them are of world standard. They are now strong competitors in the China market and increasingly in foreign markets, where they are establishing local operations.[5]

Techno-nationalism[edit]

China, as well as other Asian nations, sees science and technology as vital for achieving economic and political goals as well as national prestige. Lacking indigenous technological intellectual property and innovation are seen as key national problems. Premier Wen Jiabao in 2006 stated that "Without independent innovation China would be unable to claim an equal place in the world or achieve national honor".[6]

Despite the Chinese economic reforms, the Chinese state, as also is the case in several other Asian nations, continues to heavily direct both the public and the private economy and research by means such as national plans, regulations, taxes, and subsidies. Developing and prioritized industries and research are protected and guided. There are systemic efforts to replace foreign technology and intellectual properties with indigenous. Foreign companies are given many incentives for technology transfer and for moving R&D to China. At the same time the technological abilities of the indigenous companies are supported in various ways. The importance of the nationalistic top-down governance as compared to the importance of other factors, such as the economic liberalization, for the rapid progress of Chinese S&T is uncertain. There is a potential for conflict and opposing, foreign nationalistic policies if problems for foreign companies and nations are blamed on Chinese economic and scientific advances and Chinese nationalistic policies.[6]

Nationalism and nationalistic achievements have been seen as becoming the main ideological justifications and societal glue for the regime as Marxism loses influence. Some science and technology mega-projects has been seen as questionable trophy projects done for propaganda purposes with Chinese state-controlled media being filled with reports of Chinese achievements.[7][8]

Gross Domestic Expenditures on Research and Development[edit]

Between 2000 and 2008, Gross Domestic Expenditures on Research and Development (GERD) rose by an average of 22.8% annually, which increased the share of GERD to GDP from 0.9% to 1.54%. China aims to increase this to 2.5% by 2020 and in 2016 it reached just over 2%. In 2008 82.76% went to experimental development, 12.46% to applied research, and 4.78% to basic research. Business enterprises contributed 59.95% of GERD in 2000 and 73.26% in 2008. Spending by enterprises is predominantly on experimental development.[9] China aims to increase basic research's share to 15% by 2020.[4]

The research firm Battelle estimates that China's R&D expenditures will exceed that of the United States in 2023.[10]

Institutions[edit]

The State Council of the People's Republic of China is the top administrative organ in China. Immediately below it are several ministries and ministry level organisations involved with various aspects of science and technology.[11] The State Council Science and Education Leading Group, consisting of the leaders of the major science bodies, attempts to organize the national policy. Efficiency of overall coordination has been questioned with various agencies seen as having overlapping missions and rivalries for resources and sometimes engaging in wasteful duplication.[12]

The Ministry of Science and Technology of the People's Republic of China, formerly the State Science and Technology Commission, is the body primarily responsible for science and technology strategy and policy. It also administers national research programs, S&T development zones, and international cooperation. The Ministry of Education of the People's Republic of China oversees education as well as research institutes at universities. Several other ministries such as the Ministry of Industry and Information Technology of the People's Republic of China, the Ministry of Health of the People's Republic of China, and the Ministry of Agriculture of the People's Republic of China are also involved in S&T.[11]

The National Planning Office of Philosophy and Social Sciences directs planning for social sciences and philosophy.

The Chinese Academy of Sciences (CAS) is the most prestigious professional science organization in China with China's scientific elite being members. It directs many research institutes, research programs, graduate training programs, and gives influential advice. The Chinese Academy of Engineering (CAE) gives important advice but unlike the CAS does not have research institutes of its own.[11] The Chinese Academy of Social Sciences (CASS) has a similar role to CAS for social sciences and philosophy. There are also many more narrow academies such as the Chinese Academy of Fishery Sciences.

The National Natural Science Foundation of China (NSFC) gives grants to individual researchers after peer-review.[12]

The People's Liberation Army General Armaments Department directs military R&D.

The national scientific and academic organizations affiliated to the China Association for Science and Technology are also important forces in scientific and technological research.

Research is carried out by governmental research institutes, in higher learning institutions, and by private enterprises.[12]

Local governments have become increasingly important in R&D funding and may now contribute up to half of government spending. Intense rivalry for research and high-tech industry has been argued to sometimes create wasteful subsidized overcapacity, dispersal of efforts better centralized in a few localities, and poorly judged bureaucratic subsidizing of technologies that soon become out-dated.[12][13]

National programs[edit]

China's national R&D programs include:[12]

  • Key Technologies Program (renamed in 2006 as "zhicheng" or Support)
  • National High Technology Program (863 Program)
  • National Basic Research Program (973 Program)
  • Spark Program - Rural technology
  • Torch Program - New technology commercialization by creating special hi-tech zones and incubators
  • Key Laboratories Program
  • Engineering Research Centers
  • State Key and New Product Program
  • Innovation Fund for Small and Medium-Sized Enterprises
  • Special Technology Development Project for Research Institutes
  • Action Plan for Promoting Trade by Science and Technology
  • National New Products Program
  • Agricultural S&T Transfer Fund

The major national programs receive 15-20% of government R&D spending. They fund research, after a stated competitive proposal procedure, in universities, institutes, and enterprise. Important project may receive funding from several programs. The programs are argued to have had a large effect but have also been involved in scandals, corruption, fraud, accused of producing derivative works with few innovations, and claimed to ignore merit in selecting projects in favor of cronyism. China is trying to improve the efficiency by measures such as more peer-review and evaluations.[12]

Economic and Technological Development Zones[edit]

File:Modern buildings in Tianjin Economic Technological Development Area Tianjin China.JPG
Tianjin Economic-Technological Development Area.

Based on the success of the Special Economic Zones of the People's Republic of China, China has created Economic and Technological Development Zones. They have the purposes of building up high-tech industries, attracting foreign investment, increasing exports, and improve the regional economy. They are considered to have been very successful and have been expanded from an initial fourteen to fifty-four.[14]

Education and R&D personnel[edit]

Programme for International Student Assessment
2009 results for the top 10 nations[15]
Rank Mathematics Sciences Reading
1. China Shanghai, China 600 China Shanghai, China 575 China Shanghai, China 556
2. File:Flag of Singapore.svg Singapore 562 File:Flag of Finland.svg Finland 554 File:Flag of South Korea.svg South Korea 539
3. File:Flag of Hong Kong.svg Hong Kong, China 555 File:Flag of Hong Kong.svg Hong Kong, China 549 File:Flag of Finland.svg Finland 536
4. File:Flag of South Korea.svg South Korea 546 File:Flag of Singapore.svg Singapore 542 File:Flag of Hong Kong.svg Hong Kong, China 533
5. File:Flag of the Republic of China.svg Taiwan 543 File:Flag of Japan.svg Japan 539 File:Flag of Singapore.svg Singapore 526
6. File:Flag of Finland.svg Finland 541 File:Flag of South Korea.svg South Korea 538 File:Flag of Canada.svg Canada 524
7. File:Flag of Liechtenstein.svg Liechtenstein 536 File:Flag of New Zealand.svg New Zealand 532 File:Flag of New Zealand.svg New Zealand 521
8. File:Flag of Switzerland.svg  Switzerland 534 File:Flag of Canada.svg Canada 529 File:Flag of Japan.svg Japan 520
9. File:Flag of Japan.svg Japan 529 File:Flag of Estonia.svg Estonia 528 File:Flag of Australia.svg Australia 515
10. File:Flag of Canada.svg Canada 527 File:Flag of Australia.svg Australia 527 File:Flag of the Netherlands.svg Netherlands 508

In the first participation of Chinese student in an international student assessment test, the 2009 Programme for International Student Assessment, 15-year-old students from Shanghai ranked first in all of the three categories: mathematics, science, and reading. The Chinese students scored particularly well compared to other nations in mathematics. One explanation for the Chinese results may be a culture emphasizing education and competitive examinations and more time spent studying in part due to less participation in activities such as sports. Teaching have become a higher status occupation. Also, industrialized Shanghai which has done important educational reforms may not be representative for the rest of China. While there was no evidence of cheating or technical problems with the testing, Shanghai which attracts many immigrants from the rest of China may have allowed particularly good students to study in the city and the students may have been told that the test was important for China's image. The OECD director of the testing, Andreas Schleicher, said that the results were expected to produce astonishment and had been examined for accuracy by international experts after the OECD received the Shanghai scores. He also said that the results "refute the commonly held hypothesis that China just produces rote learning" and "Large fractions of these students demonstrate their ability to extrapolate from what they know and apply their knowledge very creatively in novel situations".[16]

China has become of the world's biggest sources for research and development personnel. Between 2000 and 2008, the number of engineers and scientists more than doubled to 1.59 million. Relative to population size this is still low compared to major developed nations like the United States and Japan but the gap is rapidly closing.[9] The number of doctorate awards in science and engineering have increased tenfold since the early 1990s.[17] The number of students in general at universities increased from 1 million to 5.4 million during the 1998-2007 period.[4] In 2009 alone, China produced over 10,000 Ph.D. engineering graduates, and as many as 500,000 BSc graduates in engineering, mathematics, information technology, and computer science – more than any other country.[18]

The C9 League, pitched as China's Ivy League, is an alliance of nine elite Chinese universities which receive a high amount of national research funding and produce a large share of national research output.

Chinese universities contribute an unusually large share of patents. The universities receive about half of R&D money from private enterprises.[4]

Eight out of nine members of the Politburo Standing Committee of the Communist Party of China have engineering degrees.[4]

2.25 million students have studied abroad since 1978. 340,000 were studying abroad in 2011 which was an increase by 20% over the previous year. In total 818,400 have returned to China with this occurring in particular in recent years. 186,200 returned to China in 2011 which was an increase by 38% over the previous year. China offers several benefits for high-achieving foreign educated Chinese who return to China. Students are now also returning because increased job opportunities unlike previously when many stayed abroad due lack of jobs in China.[19] A 2009 study found that only 10% of Chinese students plan to stay in the United States due to visa restrictions, fear of lack of job opportunities, and belief that US growth will lag behind average world growth rates. 52% believed that the best job opportunities were in China which was in marked contrast with earlier surveys. 74% felt that the best days of China's economy was coming. 68% intended to start businesses.[20] When they return, foreign educated students often provide crucial science and technology knowledge, management skills, and innovation abilities for scientific research and industry. The senior management in high-tech companies are often foreign educated.[21]

Chinese diaspora[edit]

Overseas Chinese, as is the case for other diasporas and their homelands, have contributed significantly to China's development. They have been seen as an important channel for bringing trade, investment, and modern technology to China by both commercial activities and public non-profit cooperation.[22] By using 'Brain Gain' to attract highly educated overseas Chinese to return to China to work, China has made significant improvements in its innovation ecosystem although there are some limitations to how sustainable this technique may be.

Industrial espionage[edit]

One of the objectives of Chinese intelligence activity abroad is alleged to be industrial espionage as well gaining military technology. Also private companies have been accused of espionage. Intelligence agencies suspect that thousands of Western companies may have been affected by data breaches that can be traced back to China.[23]

International cooperation[edit]

The China Internet Information Center stated in a 2005 article that China had inter-governmental cooperative S&T agreements with 96 nations, cooperative S&T programs with 152 nations and regions, and participated in more than 1,000 international S&T cooperative organizations. NGO international exchanges and cooperative activities had increased. The China Association for Science and Technology and related organizations as well as the National Natural Science Foundation of China participated in many cooperative international organizations. Chinese researchers held 281 leading posts on international organizations' expert committees and held 293 executive member-director or higher level positions.[24]

Technology transfer and R&D by multinational corporations[edit]

In the early 1980s foreign companies began transferring technology by licensing agreements and sales of equipment. Later in the 1980s many multinational corporations started transferring technology by entering into joint ventures with Chinese companies in order to expand in China. China in the 1990s introduced increasingly sophisticated regulations of foreign investment by which access to the Chinese market was traded for technology transfer. The entry of China into the World Trade Organization in 2001 required this practice stop but critics argue that it continues. Chinese critics have argued such technology transfer may be useful for catching up but does not create new, cutting edge technologies.[12]

China has increasingly encouraged multinational corporations to create R&D centers in China. Chinese critics have argued that foreign owned R&D mainly benefits foreign companies and removes many talented Chinese researchers from indigenous companies and institutions. Chinese supporters have argued that the foreign R&D serves as a role model and encouragement for indigenous companies and creates skilled communities from which labor and knowledge can easily flow to indigenous companies. In 2010 there were 1,200 such R&D centers and 400 out the Fortune 500 corporations had created such R&D centers. Corporations have argued that this is a necessity in order to adapt products for the local requirements of the Chinese market as well as it being essential for maintaining global competitiveness to make use the many available Chinese engineers and scientists. China is now ranked first when multinational corporations are asked in which nation future R&D centers are most likely to be located.[12]

Innovation[edit]

A 2005 report found serious shortcomings to China’s national innovation system. There were problems with services to help turn S&T work into results and the allocation of national funding to support S&T was far from optimal. Sometimes researchers became short-sighted if they get too close to the market. Another serious problem was that companies facing severe competition looked first to purchase foreign technology rather than investing in developing technology and technology development capacity at home in China. Many of the patent applications came from medium-sized enterprises (70%) since small enterprises invest little in research.[25] China's hierarchical, top-down society where authority is greatly respected and feared has been argued to stifle creative debate.[26]

China in a 2006 report outlined policies for improving innovation. They include 20 large megaprojects in areas such as nanotechnology, high-end generic microchips, aircraft, biotechnology, and new drugs. This is combined with a more bottom-up approach on a Silicon Valley model consisting of small start-ups, venture capital, and cooperation between industry and universities.[27]

It has also been argued that China is the world leader in making small, innovative improvements to existing designs. One example is continual improvements to the design of power supplies making them gradually smaller, less expensive, and more energy efficient. This may not create completely new products or create headlines but may be more important for creating employment.[28][29]

A 2016 NBER paper found that the Chinese economy is becoming increasingly innovative.[30] The study found that rising labor costs in China and "expanded market opportunities in the world economy" were the main drivers behind innovations.[30] The study also found that state-owned firms innovated less than private firms, even though state-owned firms received far greater subsidies.[30]

Procurement[edit]

The central Chinese government, a large buyer of high-tech products, in 2009 proposed controversial policies demanding that companies selling to it promote Chinese innovation and that the products sold are free of foreign intellectual property.[27] The most controversial parts were later withdrawn but local Chinese governments continue to use procurement to encourage indigenous innovation.[12]

Intellectual property[edit]

Effective protection of intellectual property has been seen as weak. There has been an increasing recognition of that this discourages indigenous innovation and efforts has been made to strengthen the system.[12]

China has been accused of not protecting foreign intellectual property and tacitly allowing such technologies to be copied and claimed to be Chinese intellectual property.[27]

Patents[edit]

China in 2011 became the nation with highest amount of filled patent applications. However, this reflects in part that the government gives companies incentives for filing patent applications regardless of if eventually granted. The percentage of patents applications in China filed by Chinese companies rose from less than 52% in 2006 to nearly 73% in 2010. World Intellectual Property Organization data shows that Chinese companies have also become more important regarding patents overseas with Chinese companies now being on place two and four regarding number of patent applications filed by individual companies. China aims to transform the economy from "Made in China" to "Designed in China" and from contract manufacturing to having brand name companies with resulting improved profit margins.[31]

The relative proportion of granted patents is lower with China being behind Japan and the United States when measuring the number of granted patents at the patent offices of the US, Japan, the EU, South Korea, and China (who together administer about 75% of the world's patents). However, China is now granted about twice as many patents as South Korea or the EU while five years ago China was granted about the same amount as each of these regions.[10]

Standards[edit]

To encourage innovation and avoid foreign intellectual property China has been developing indigenous technical standards. One example is the TD-SCDMA 3G standard. Critics have seen it as costly and delaying 3G introduction while supporters argue that it has increased technical abilities and experience which has increased Chinese competitiveness regarding 4G.[12] Long-Term Evolution Time-Division Duplex is being implemented as China's indigenous 4G standard.

Academic publishing[edit]

The Royal Society in a 2011 report on academic publishing stated that in share of English scientific research papers the United States was first followed by China, the UK, Germany, Japan, France, and Canada. The report predicted that China would overtake the United States some time before 2020, possibly as early as 2013. China's scientific impact, as measured by other scientists citing the published papers the next year, is smaller although also increasing.[32] An analysis of ISI Web of Knowledge data found that China had increased its share of the most highly cited science articles from 1.85% in 2001 to 11.3% in 2011. By 2014 China could surpass Germany and the UK and be ranked second after the United States. The share of the United States declined from 64.3% to 50.7% during the same ten-year period.[33]

A 2009 study of Chinese social science studies in the Social Sciences Citation Index found a slow increase until 1999. The 1999-2007 period saw a very rapid increase. However, in 2007 China still only contributed 1.39% of the studies and mainland China only surpassed Hong Kong in 2006. Economics & business had larger share than social, political & communication science and psychology. The low share of social sciences compared to natural sciences may reflect that this is a common pattern in Asian nations, that Chinese social scientists publish in national journals not included in the Index and have less career incitements regarding publishing in international journals, and that state ideology and control is more important for social sciences than natural sciences. In China natural sciences are administered by the Ministry of Science and Technology while social sciences are administered by the National Planning Office of Philosophy and Social Sciences which may hinder inter-disciplinary collaboration.[34]

Articles published in China related to basic medial science and clinical research and indexed by PubMed increased on average by 31.2% and 22% each year between 2000 and 2009. Randomized clinical trial were about 1/3 of clinical research articles. However, in 2009 this still represented only 1.5% of worldwide clinical research articles and 1.7% of worldwide randomized clinical trials. Clinical research education for medical students and the involvement and the supporting environment for medical doctors regarding clinical research have shortcomings.[35]

Science-Metrix, a Canadian data-analysis company, predicted that in 2010 China would publish as many natural sciences and engineering peer-reviewed papers as the United States. In 2015 China is predicted to publish as many papers as the US across all fields. In 2030 China is predicted to surpass the US in life and social sciences.[36]

There are 8,000 journals and 4,600 in scientific fields. Almost all Chinese science organisations publish their own journal. The government owns or supports most journals with only a small number being privately owned. The "publish or perish" system has been argued to contribute to many low quality journals and articles that are infrequently cited and also to plagiarism and fraud. The Chinese government has put into place stricter regulations, punished or terminated some journals, and aims increase quality control and peer evaluation of journals as well as to create five to ten large publishing groups.[37] As part of the reforms, in 2012 the China Association for Science and Technology, which oversees 1,050 journals, in a declaration listed various forms of misconduct, plagiarism, and fraud and as well, the penalties for perpetrating them such as written warnings, blacklisting, contacting the researcher's home institution or funding agencies, or public disclosure. It has also been seen as important by increasing pressure on other journals and by informing editors who may not know that some actions such as favoring researchers based on personal relations are unacceptable. China also plans to give substantial financial incentives to top journals based on factors such as their Chinese and international impact factor. It has been questioned if this will have an effect on the many poor quality journals who in return for money help researchers fill their institutional requirements for published papers.[38]

State owned enterprises[edit]

Chinese state-owned enterprises are owned by a variety of actors such as local governments and governmental agencies. They may benefit from advantages not available for smaller, more innovative firms which have been seen as problematic. In 2010 state owned enterprises won many biddings for renewable energy projects since they did not have worry about paying off investments for several decades and could ignore risks and costs. The owners may attempt to protect their enterprises from competition by regulations or otherwise use their influence in an unfair manner which may stifle more innovative, private competitors. Private enterprises surpassed stated owned enterprises during the 2002-2007 period regarding rapidity of increase of research spending, patent applications, and R&D laboratories. The number of research scientists and engineers increased rapidly in private enterprises while they declined in state owned enterprises.[12]

Corruption[edit]

Concerned about corruption in Chinese science,[39] some Chinese scientists, including Professor Liu Ming 刘明 of Zhejiang University in his 2005 book Critique of the Academic Evaluation System 学术评价制度批判, argue that interference from government officials and university bureaucrats makes peer review far less effective in China than it could be. The time scientists spend cultivating politically influential people is lost to scientific research. Liu argues that the command economy mentality of measuring everything by the numbers combined with pervasive political interference results in a great waste of money, human talent as well as considerable corruption in Chinese science.[40] A 2008 investigation into a certification for high-tech enterprises allowing large tax breaks and other advantages found that more than 70% of the enterprises had gained this under questionable circumstances and an investigation of a sample found that 73% did not pass the requirements.[12]

Awards[edit]

The State Science and Technology Prizes, including the State Preeminent Science and Technology Award, are the highest honor in People's Republic of China in science and technology, in order to recognize citizens and organizations who have made remarkable contributions to scientific and technological progress, and to promote the development of science and technology.

Specific areas[edit]

File:Value high-tech exports 2009.PNG
Value in dollars of high-tech exports by country in 2009. The value of Chinese high-tech exports was more than twice that of any other nation.

Electronics and information technology[edit]

In 2009 China manufactured 48.3% of the world's televisions, 49.9% of mobile phones, 60.9% of personal computers, and 75% of LCD monitors. Indigenously made electronic components have become an important source of recent growth. The Chinese software industry in 2010 had a higher than 15% share of the world's software and information service market and had been growing by an average 36% each year during the previous decade. Chinese IT companies have been moving away from narrow downstream services and products to having a full range. China, with the active support of the Chinese government, is a leading pioneer in Internet of Things technology.[41]

According to the China Internet Network Information Center there were 751 million internet users as of 2017, with 53.2% of the population being internet users. The number of mobile internet users reached 724 million, with high penetration rates for mobile phones and broadband internet.[42][43] By 2017, China has the largest e-commerce market in the world, worth US$1.132 trillion, with a significant lead on other markets and almost tripling US market, the second largest.[44]

In 2017, there were more than 1.36 billion mobile subscribers in China, with the number of fixed line subscriptions hitting 310 million. The number of 4G users increased significantly, hitting 932 million by August 2017.[45][46][47] By 2020, China plans to adopt 5G network nationwide. State-owned China Telecom has already deployed 5G-oriented C-RAN fronthaul network, unveiling that it will be conducting commercial trials of 5G technology in 2019 and carry out network field trials in six Chinese cities in the latest sign of China's determination to lead the global deployment of the next-generation mobile technology.[48][49][50]

On 8 July 2017, the Chinese State Council announced plans to turn China into the world leader in artificial intelligence (AI) by 2030, seeking to make the industry worth 1 trillion yuan.[51] The State Council published a three-step road map to that effect in which it outlined how it expects AI to be developed and deployed across a wide number of industries and sectors, such as in areas from the military to city planning.[51] According to the road map, China plans to catch up to current AI world leaders technoloogical abilities by 2020, make major breakthroughs by 2025, and be the world leader in 2030.[52][53]

Microprocessors[edit]

China has their own versions of microprocessors, manufactured and developed domestically, which are also used to build the world's most powerful supercomputers.

processor architecture Processor name Manufacturer supported OS Supercomputer
RISC64 SW26010 ShenWei RaiseOS (Linux) Sunway TaihuLight
MIPS64 Loongson, Godson ICT & CAS Android, Linux, BSD Dawning 6000
Power8, Power9 PowerCore CP1, CP2 Suzhou PowerCore Suse Linux
SPARC64 FeiTeng3rd gen, Galaxy FT-1500 YinHeFeiTeng Kylin Linux Tianhe-2
Intel Itanium (x86-64) FeiTeng 1st gen YinHeFeiTeng
ARM64 Phytium Mars, Xiaomi Phytium Technology Kylin Linux
AMD Zen (x86-64) THATIC

Supercomputing[edit]

Supercomputing in China has expanded rapidly. Supercomputing affects the possibility to do cutting edge research in many areas such as design of pharmaceuticals, cryptanalysis, natural resource exploration, climate models, and military technology. As of 2017, China had 202 of the 500 greatest supercomputers in the world, far exceeding any other country (including the US which has 143), in addition to possessing the top 2 most powerful supercomputers.[54][55] China is developing the capacity to manufacture the components domestically and plans to be the first to build an exascale supercomputer. China may also be planning to create much more powerful large-scale distributed supercomputing by connecting its supercomputer centers together.[56] Tianhe-1 was for a period in 2010-2011 the world's fastest supercomputer.[57] In June 2013, Tianhe-2, the successor to Tianhe-1, took the crown from its predecessor. In 2016, China's new supercomputer, Sunway TaihuLight became the world's most powerful supercomputer, significantly surpassing Tianhe-2's capabilities by three folds, while using Chinese-made chips. This signals China's success not only in the supercomputing industry, but also its domestic chip-making technology.[58][59]

Semiconductors[edit]

China's semiconductor industry has despite extensive governmental support had many problems in areas such as innovative new designs. This may be due to factors such as poorly guided state and local government support for soon outdated technologies and geographically scattered efforts, lacking engineering education, and poor protection of intellectual property. This may change by factors such a new emphasis on market mechanisms rather than direct support, concentration of efforts, return of Chinese who have studied abroad, increased pressure on foreign companies to transfer technology, indigenous Chinese technological standards, and increased demands for indigenous technology in the local market.[13][60][61]

The country has rapidly progressed in the semiconductor industry, while backing its largest chip maker and developer, Tsinghua Unigroup, with a US$150 billion funding to secure China's dominance in the semiconductor technology, and build a world-class semiconductor industry over the next 5 years.[62][63][64]

Machine tools[edit]

Development of advanced machine tools, such as computer numerical control machine tools, are seen as a priority and supported by the Chinese government. China is the world's leading producer and consumer of machine tools.[65] A 2010 US government report stated that US export controls of advanced five axis machine tools were ineffectual due to the technical capabilities of Chinese and Taiwanese manufacturers.[66]

Drones[edit]

China is the leader in drone technology, it is the first country in the world to create large scale transport drones, as well as the first to produce an amphibious drone. Chinese drone companies such as DJI and Ehang (Beijing Yi-Hang Creation Science & Technology) conquered majority of the civilian drone industry, with DJI alone dominating 85% of the global market share. Ehang also created the world's first flying taxi drone, Ehang 184, an eco-friendly low altitude autonomous aerial vehicle capable of providing transportation and medium distance communication.[67][68][69][70][71]

Robotics[edit]

In some regions, such as the Pearl River Delta, manufacturers have problems with labor shortages, raising wages, and higher expectations regarding work from more highly educated young people. This has increased the demand for industrial robots. As of 2017, China is the largest user and producer of robotics technology, as well as the first country in the world to perform an automated dental implant. It is the largest and fastest-growing robotics market in the world, and plans to manufacture at least 100,000 industrial robots annually by 2020.[72][73][74]

Textiles[edit]

China in 2012 produced more than one third of the developed world's apparel import but the share has been decreasing in recent years as low-technology and labor-intensive production has been moving to regions like Southeast Asia and Eastern Europe.[75][76]

Mining and rare earth industry[edit]

File:Coal mine in Inner Mongolia 002.jpg
Coal mining in Inner Mongolia.

Advisory firm The Beijing Axis director Lilian Luca in 2010 stated that China was becoming a world leader in mining technology. Technological solutions were initially concentrated on achieving massive low-cost production but increasing emphasis has been placed on environmental and safety issues in part reflecting greater concern in China with environmental issues. China was already a world leader in certain areas such as rare earth elements.[77] China has imposed export quotas on rare earth elements, 95% of which are mined in China, citing environmental issues, but has been accused of wanting to force high-tech industry using rare earth elements to move to China.

Finding rare earth elements is only the first and some argue the easiest step. Other steps towards manufacturing such as refining is controlled by China and Japan with the previously dominant United States having lost all of its producers and much of its fundamental technological ability with the number of scientists and engineers in the area declining dramatically.[78]

Material science and nanotechnology[edit]

A 2012 study found that China's share of academic papers on nanotechnology had increased from less than 10% in 2000 to nearly a quarter in 2009 and had overtaken the United States for the first position. However, China was less influential in the top three journal and regarding citations. China was increasing its share in influential journals. China was on second place regarding received patents. National standards and oversight bodies had been created.[79]

Chemicals[edit]

File:Ganjiaxiang - industrial panorama - P1070643.JPG
Jinling oil refinery in Nanjing.

KPMG in 2010 predicted that the Chinese chemical industry will become world's largest producer by 2015. The Chinese government aims to make China self-sufficient regarding petrochemicals and plastics with the exception of the raw feedstock of oil and gas. The Chinese industry is increasing R&D in order to create higher value products using more advanced technology.[80] Another development is increasing focus on environmental concerns and renewable energy technology.[81]

Agriculture[edit]

There is a lack of arable land and water which means only new technology can increase the output of Chinese agriculture. Former President Jiang Zemin's has therefore called for a "new revolution in agricultural science and technology."[82] Restrictions and regulations concerning genetically modified foods have been introduced or proposed after widespread public concern.[83] China has been buying millions of foreign breeder animal as well as large amount of foreign semen and livestock embryos in order to rapidly improve the genetics of Chinese livestock.[84] More advanced agricultural methods such as increasing use of pesticides has contributed to concerns regarding the Food safety in China.

Fishing and aquaculture[edit]

File:Cyprinus carpio.jpeg
The common carp (Cyprinus carpio).

In 2008 the fishing industry in China accounted for 34% of the global output. Aquaculture in China had more than twice the output of capture fishing and contributed 62.3% of the global aquaculture output.[85] The rapid growth of aquaculture is in part due to Chinese research such as regarding the artificial breeding of carps.[86][87]

Biotechnology and genetics[edit]

Monitor Group in a 2010 report predicted that China within a decade will become the world leader in discovery and innovation in life sciences. Some research is seen as less controversial in China than elsewhere such as research regarding the genetic causes of intelligence. BGI, formerly Beijing Genomics Institute, has been described as having the world's largest DNA sequencing facilities.[88]

Stem cell research and stem cell treatments are less controversial in Chinese culture which have supported Chinese research as well medical tourism to China in order to receive experimental and often unproven therapies. In 2012 a regulatory crackdown was instituted which may increase the ability of the Chinese industry to get approval for sales of future therapies to other nations.[89][90] More generally, China aims and has made progress towards becoming a world leader in regenerative medicine which also includes areas such as tissue engineering and gene therapy.[91]

China in 2011 stated that biotechnology (including biopharmacy, biological engineering, bio-agriculture and biomanufacturing) was a major priority for science and technology spending. Biotechnology will be used to enhance economic development as well as for improving Chinese environmental protection, nutrition, healthcare, and medicine. The Chinese governments expects biotechnology to add 1 million jobs during the 2011-2015 period.[92]

Pharmaceuticals and medical technology[edit]

File:Artemisinin.svg
The malaria drug artemisinin was developed by Chinese scientists from traditional Chinese herbology which is part of traditional Chinese medicine.

Merrill Lynch predicted in 2011 that China would become the world's second largest pharmaceutical market in 2013 and the largest in 2020.[93] The chief executive of Hoffmann-La Roche in 2012 stated a few years ago many Chinese life sciences scientists had to leave China but that many were now returning to conditions often better than in the West regarding laboratories, funding, and political support for the industry.[94] Counterfeit drugs have caused a number of scandals as well as being a problem for drug development and authorities have increased regulations and enforcement.[95][96]

A 2011 report by PwC stated that a decade earlier China barely had any presence in the medical technology industry but its abilities had been rapidly growing. China could well become more important than Europe by 2020.[97]

Environmental issues[edit]

Rapid industrialization has been accompanied by many environmental problems and rising pollution in China. One part of the Chinese response involves advanced technology such as the world's largest high-speed rail network and high fuel efficiency requirements for vehicles.[98] China is rapidly expanding its wastewater treatment systems and power plant emission reduction systems.[99][100] Due to the Chinese water crisis, as well as for future exports, China is building up its desalination technological abilities and plans to create an indigenous industry. Some cities have introduced extensive water conservation and recycling programs and technologies.[101]

Power generation and transmission[edit]

As China rapidly industrializes power consumption and power generation are also increasing as well as research on these issues.

Coal is predicted to remain the most important power source in the near future and China has been seen as the world leader in clean coal technology.[102][103][104] In 2009 China become the world's largest investor in renewable energy technologies.[105] Nuclear power is planned to be rapidly expanded with China wanting to maximize self-reliance in nuclear reactor technology manufacturing and design although international cooperation and technology transfer are also encouraged. Advanced pressurized water reactors such as the CPR-1000 and the AP1000 are the mainstream technology in the near future. Later very high temperature reactors, such as pebble bed reactors, are a priority. By mid-century fast neutron reactors are seen as the main technology.[106]

China in 2012 intended to spend $100 billion on smart grid technology during the next five years, to install 300 million smart meters before 2016, and to become the world leader on electric power transmission.[107] Ultra high voltage electricity transmission in China is being introduced order to reduce transmission losses.

Transportation[edit]

Transportation infrastructure continues to be rapidly developed. The National Trunk Highway System was in 2011 estimated to surpass the US interstate system in length.[108] Many Chinese cities have or are planning to build metros or other forms of rapid transit.

Trains[edit]

File:Chinacrh380aatchangzhou.jpg
Chinese designed CRH380A.

BBC wrote in a 2011 article on high-speed rail in China that China in 2005 had no high-speed railways. In 2010 it had more than Europe and in 2012 China was expected to have more than the rest of the world combined. China demanded that foreign companies wanting to participate had to share their technology. 10,000 Chinese engineers and academics then in three years produced a faster Chinese high-speed train. China is now exporting it to other nations.[26]

Motor vehicles[edit]

The automotive industry in China is the world's largest producer of motor vehicles.[109] However, China's indigenous car companies have had difficulties on the global market and the growing electric vehicle market has been seen as way to remedy this. China in 2010 proposed controversial legislation requiring foreign electric vehicle producers to form minority joint-ventures and share technologies with Chinese carmakers in order to get market access.[110] A 2011 report financed by the World Bank stated that China was becoming the world leader on electric vehicles.[111]

Commercial aircraft[edit]

The state owned Comac aerospace manufacturer aims to reduce Chinese dependency on foreign companies for large passenger aircraft.[112] The future C919 aims to be completely made in China.[113]

Shipbuilding[edit]

In 2009-2010 China become the world's largest shipbuilder but South Korea regained the top position in 2011 in part due to more advanced technology. China is developing its technological abilities and competition is expected to increase.[114][115]

Entertainment[edit]

The Chinese animation industry and access to the latest technology, such as 3D computer-generated imagery technology, is actively supported by the Chinese government and included in the latest national planning. In part this may be because of a desire to increase Chinese soft power. The same technology as in Hollywood is available and much postproduction is outsourced to China. Successful indigenous artistic creativity is seen as a problem and may be restricted by factors such as production being aimed at getting government patronage rather than public approval, censorship, and some story lines based on Chinese culture not appealing to foreign audiences.[116] DreamWorks Animation, in a joint venture with Chinese companies, will set up a studio in Shanghai that may eventually get bigger than DreamWorks HQ, in part to avoid to quota restrictions on foreign films with China within a decade having been predicted to become the world's biggest cinema and entertainment market.[117][118] Disney has also entered into a partnership in order to help develop the Chinese animation industry.[119]

The China Research Institute of Film Science & Technology and the China Film Group Corporation developed and in 2012 put into commercial use the DMAX motion picture film format as well as associated technologies. It has been described as a competitor to IMAX and as laying the foundation for Chinese film projection technology using indigenous Chinese technology and intellectual property.[120]

Polar research[edit]

The Chinese Arctic and Antarctic Administration (CAA) organizes China's scientific program for both the Arctic and Antarctic. Polar research by China, in particular in Antarctica, has been growing rapidly with China now having three Antarctic research stations and one in the Arctic on Svalbard.[121][122]

Deep sea exploration[edit]

China is developing its deep sea exploration capabilities, such as by the Jiaolong submersible, with an eye to future applications such as deep sea mining.[123]

Nuclear Physics[edit]

China successfully tested H-bomb on June 17, 1967 at Lop Nur Nuclear Weapon Test Base, in Malan, Xinjiang(also known as Test No. 6). China became the fourth country to have successfully developed a thermonuclear weapon after the United States, Soviet Union and the United Kingdom. It was dropped from a Hong-6(Chinese manufactured Tu-16) and was parachute-retarded for an airburst at 2960 meters. The bomb was a three-stage device with a boosted U-235 primary and U-238 pusher. The yield was 3.3 megatons.

It was a fully functional, full-scale, three-stage hydrogen bomb, tested 32 months after China had made its first fission device. China thus produced the shortest fission-to-fusion development known in history. China had received extensive technical help from the Soviet Union to jump-start their nuclear program, but by 1960, the rift between the Soviet Union and China had become so great that the Soviet Union ceased all assistance to China.[1] Thus, the Number 6 test was indeed an independent endeavor, after the induced military and economic sanctions enacted by the superpowers at the time, the United States and the Soviet Union.

Nevertheless, a comparison of other fission-to-fusion timespans may be instructive. The time between the U.S.'s first atomic test and its first hydrogen bomb test was 86 months, for the USSR it was 75 months, for the UK 66 months and later for France, 105 months.[1]

China H-bomb was different from the traditional Teller-Ulam configuration. As an advantage, it was completed without the calculations needed from supercomputers, which would consume a lot of time. To shrink the size of the weapon, the reflectors were made parabolic with the solid fusion fuel located at the foci. It is also known as Yu Min Design (or Yu-Deng Design) as Yu Min made major contributions included the solutions to a series of fundamental and critical theoretical problems of nuclear weapons, which led to breakthrough of the unique hydrogen bomb.

The goal of China was to produce a thermonuclear device of at least a megaton in yield that could be dropped by an aircraft or carried by a ballistic missile. Several explosions to test thermonuclear weapon designs, characteristics and yield boosting preceded the thermonuclear test.[1]

Space science[edit]

File:中國空間站二.PNG
Artist's impression of the Chinese space station, c. 2005.[124]

The Chinese space program is a major source of national pride.[125] In 1970 the first Chinese satellite, Dong Fang Hong I, was launched. In 2003 China become the third country to independently send humans into space with Yang Liwei's spaceflight aboard Shenzhou 5. In 2008 China conducted a spacewalk with the Shenzhou 7 mission. In 2011 Tiangong-1 was launched which was the first step towards a Chinese space station around 2020. The active Chinese Lunar Exploration Program includes a lunar rover in 2013 and possibly a manned lunar landing in the 2020s. Experience gained from the lunar program will be used for future programs such as exploration of Mars and Venus.[126][127]

China plans to launch 5 commercial satellites for foreign customers in 2012 and aims to capture 15% of the commercial launch market and 10% of the satellite export market by 2015. In 2011 China launched a total of 19 rockets which was the second most after Russia.[128]

The Five hundred meter Aperture Spherical Telescope to be completed in 2016 will be the world's largest radio telescope.[129]

Military technology[edit]

One example of new Chinese military technology is the DF-21D anti-ship ballistic missile which reportedly has contributed to a quick and major change in US naval strategy.[130] China is developing anti-satellite weapons and plans to make the navigational Beidou system global by 2020.[131] Other new technologies include Chinese anti ballistic missile developments, the Chengdu J-20 fifth-generation jet fighter, and possibly electromagnetic pulse weapons.[132][133] Chinese reconnaissance satellites are, according to a 2011 report, almost equal to those of the United States in some areas in which China had almost no capability a decade earlier.[134] Despite increased defense spending, China's share of the world's import of arms is rapidly falling, in part reflecting the increased abilities of the indigenous military production.[135] China is also developing power projection military capabilities such as through the Chinese aircraft carrier programme and the Type 071 amphibious transport dock.

15-28% of governmental R&D expenditures may go to military research according to some unofficial estimates. The Chinese defense sector remains almost completely state owned but military equipment production has been reorganized into corporate bodies allowing limited competition and the defense patent system has been reformed to allow greater rewards to innovative enterprises and individuals. The organizational structure has shed civilian applications while at the same time cooperation with the civilian sector has increased and state supported civilian research sometimes have dual use applications.[12] Chinese jet engines remains a problematic area that has caused concern at the highest levels with China still being largely dependent on imports from foreign manufacturers. One possible explanation is a continued Soviet style fragmentation of the research and production line into many isolated units having little contact with one another causing problems with overall standardization, integration, and quality control. More problems from this may be duplication of efforts, dispersal of efforts, and unproductive competition over patronage causing problems such as dishonest reporting of problems. High precision jet engines may be particularly sensitive to accumulated quality problems.[136]

See also[edit]

References[edit]

<templatestyles src="Reflist/styles.css" />

  1. 1.0 1.1 1.2 "Country Studies - China - Federal Research Division - The Library of Congress" [archive]. loc.gov.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  2. Justin Yifu Lin (2011). "Demystifying the Chinese Economy" [archive] (PDF). Cambridge University Press, Preface xiv.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  3. "State Council Decision on Accelerating S&T Development" [archive]. usembassy-china.org.cn. Archived from the original [archive] on 3 March 2001.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  4. 4.0 4.1 4.2 4.3 4.4 "Media - In the News - Battelle" [archive] (PDF). battelle.org.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  5. Yip, George; McKern, Bruce. China's Next Strategic Advantage:from Imitation to Innovation. Boston: MIT Press 2016. ISBN 9780262034586.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  6. 6.0 6.1 http://www.feer.com/articles1/2006/0603/free/p005.html [archive]
  7. "Nationalism in China" [archive]. Council on Foreign Relations.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  8. Iain Mills. "China Chooses 'Mega-Events' Over Structural Reforms" [archive]. worldpoliticsreview.com.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  9. 9.0 9.1 http://unesdoc.unesco.org/images/0018/001899/189958e.pdf [archive]
  10. 10.0 10.1 "Media - In the News - Battelle" [archive] (PDF). battelle.org.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  11. 11.0 11.1 11.2 http://www.naider.com/upload/82_china_final.pdf [archive]
  12. 12.00 12.01 12.02 12.03 12.04 12.05 12.06 12.07 12.08 12.09 12.10 12.11 12.12 12.13 http://www.uscc.gov/researchpapers/2011/USCC_REPORT_China's_Program_forScience_and_Technology_Modernization.pdf [archive]
  13. 13.0 13.1 Vivek Wadhwa, Why China's Chip Industry Won't Catch America's, September 3, 2009 Bloomberg BusinessWeek, September 3, 2009
  14. "National Economic and Technological Development Zones-China.org.cn" [archive]. china.org.cn.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  15. "Page not found" [archive] (PDF). oecd.org.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  16. Dillon, Sam (7 December 2010). "In PISA Test, Top Scores From Shanghai Stun Experts" [archive]. The New York Times.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  17. http://www.eastwestcenter.org/fileadmin/stored/pdfs/api100.pdf [archive]
  18. Colvin, Geoff (29 July 2010). "The rise of engineers in China is leaving the US behind - Jul. 29, 2010" [archive]. cnn.com.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  19. The PIE News. "International Education News l The PIE News l Number of returning Chinese students up 38%" [archive]. thepienews.com.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  20. "Losing the World's Best and Brightest: America's New Immigrant Entrepreneurs, Part V - Kauffman.org" [archive]. kauffman.org.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  21. Vivek Wadhwa, Committee on the Judiciary of the United States House of Representatives Subcommittee on Immigration Policy and Enforcement, October 5, 2011
  22. Teo Victor, Technonationalism, Development and the Chinese Diaspora in East Asia: An Exploratory Study, University of Hong Kong, Hong Kong, The 4th International Conference of Institutes & Libraries for Overseas Chinese Studies May 9–11,Guangzhou,China
  23. Ashlee Vance (15 March 2012). "China Corporate Espionage Boom Knocks Wind Out of U.S. Companies" [archive]. Bloomberg.com.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  24. "International Cooperation in Science and Technology -- china.org.cn" [archive]. china.org.cn.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  25. "Issues in Building a National Innovation System" in 2005 High Technology Development Report (Gao Jishu Fazhan Baogao) from the Chinese Academy of Science (Kexue Chubanshe, Beijing 2005).
  26. 26.0 26.1 Robinson, Michael (2010-08-01). "BBC News – China's new industrial revolution" [archive]. BBC. Retrieved 2011-08-14.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  27. 27.0 27.1 27.2 "China's Innovation Wall" [archive]. Foreign Affairs.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  28. Tom Hancock. "Chinese innovation: world beating, but boring" [archive]. ZDNet.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  29. http://yalepress.yale.edu/yupbooks/book.asp?isbn=9780300152715 [archive]
  30. 30.0 30.1 30.2 Wei, Shang-Jin; Xie, Zhuan; Zhang, Xiaobo (2016-11-01). "From "Made in China" to "Innovated in China": Necessity, Prospect, and Challenges" [archive]. National Bureau of Economic Research. Cite journal requires |journal= (help)<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  31. "China tops U.S, Japan to become top patent filer" [archive]. Reuters. 21 December 2011.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  32. Alok Jha (28 March 2011). "China poised to overhaul US as biggest publisher of scientific papers" [archive]. the Guardian. London.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  33. http://www.natureasia.com/en/information/press_releases/20120524_NPI-China-2011.php [archive]
  34. Zhou, P.; Thijs, B.; Glänzel, W. (2008). "Is China also becoming a giant in social sciences?". Scientometrics. 79 (3): 593. doi:10.1007/s11192-007-2068-x [archive].<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  35. Hu, Y.; Huang, Y.; Ding, J.; Liu, Y.; Fan, D.; Li, T.; Shou, C.; Fan, J.; Wang, W.; Dong, Z.; Qin, X.; Fang, W.; Ke, Y. (2011). "Status of clinical research in China". The Lancet. 377 (9760): 124. doi:10.1016/S0140-6736(11)60017-2 [archive].<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  36. https://www.newscientist.com/article/dn18546-iran-showing-fastest-scientific-growth-of-any-country.html [archive]
  37. "CHINA: Crackdown on sub-standard journals - University World News" [archive]. universityworldnews.com.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  38. Cyranoski, D. (2012). "Chinese publishers vow to cleanse journals". Nature. doi:10.1038/nature.2012.10509 [archive].<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  39. See for example the mid March 2006 issue of China Newsweek 中国新闻周刊 "A SARS-like Epidemic of Corruption in Higher Education and Science", 9 June 2006: Vol. 312. no. 5779, pp. 1464–1466.
  40. Liu Ming, Critique of the Academic Evaluation System 学术评价制度批判 Changjiang Wenyi Chubanshe, 2005.
  41. http://readperiodicals.com/201201/2562864021.html#b [archive]
  42. "China's audacious and inventive new generation of entrepreneurs" [archive]. The Economist.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  43. "Chinese apps dominate most-used Android app rankings" [archive]. The Straits Times. 21 September 2017.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  44. "China's ecommerce market to pass $1.1tn in 2017" [archive]. The Drum.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  45. "China: mobile users 2017 | Statista" [archive]. Statista.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  46. "China 4G subscriber base hits 932M - Mobile World Live" [archive]. Mobile World Live. 20 September 2017.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  47. "China's Fixed-line Broadband Penetration Rate To Hit 63% This Year – China Money Network" [archive]. www.chinamoneynetwork.com.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  48. "China's advanced 5G network set for adoption in 2020" [archive].<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  49. Daniels, Guy (22 September 2017). "China Telecom deploys 5G-oriented C-RAN fronthaul network" [archive]. TelecomTV.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  50. "China Telecom Plans Commercial 5G Trials in 2019 | Light Reading" [archive]. Light Reading.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  51. 51.0 51.1 Kharpal, Arjun (2017-07-21). "China wants to be a $150 billion world leader in AI by 2030" [archive]. Retrieved 2017-07-24.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  52. "China sets out road map to lead world in artificial intelligence by 2030" [archive]. South China Morning Post. Retrieved 2017-07-24.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  53. "China Outlines Ambitions to Become World Leader in AI by 2025 - Caixin Global" [archive]. www.caixinglobal.com. Retrieved 2017-07-24.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  54. "Chinese supercomputer is the world's fastest — and without using US chips" [archive]. The Verge.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  55. "China dominates top supercomputers list" [archive]. BBC News. 13 November 2017.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  56. http://www.thedailybeast.com/newsweek/2011/11/27/in-race-for-fastest-supercomputer-china-outpaces-u-s.html [archive]
  57. China’s Defense University builds World Third fastest supercomputer [archive], china-defense-mashup.com, 29 October 2009<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  58. "China's New Supercomputer Puts the U.S. Even Farther Behind—Like, Way Behind" [archive]. WIRED.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  59. Davey Alba (June 17, 2013). "China's Tianhe-2 Caps Top 10 Supercomputers" [archive]. IEEE Spectrum.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  60. "Opportunities for China's semiconductor industry" [archive]. The Nation. 26 March 2012.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  61. http://www.digitimes.com/Reports/Report.asp?datepublish=2011/08/03&pages=RS&seq=400 [archive]
  62. "China's Top Chipmaker Secures $22 Billion to Expand Globally" [archive]. Bloomberg.com. 28 March 2017.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  63. "China's largest chipmaker secures US$22bn in funds - Taipei Times" [archive]. www.taipeitimes.com.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  64. "China will dominate the global semiconductor market in the next 5 years | Solid State Technology" [archive]. electroiq.com.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  65. http://www.marketresearch.com/Freedonia-Group-Inc-v1247/Machine-Tools-China-6501659/ [archive]
  66. "U.S. Precision Machine Tool Industry Is No Longer A Global Competetitive Force" [archive]. manufacturingnews.com.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  67. "What China's Drone Makers Could Teach Other Chinese Brands" [archive].<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  68. "Chinese engineers make plane into first large delivery drone - The Nation" [archive]. The Nation.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  69. "DJI is dominating the consumer drone industry, so which companies are left? - The Drone Girl" [archive]. The Drone Girl. 26 February 2017.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  70. "First city in the world to have flying taxis; the future is here - Cape Business News" [archive].<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  71. Pham, Sherisse. "This Chinese drone can take off and land on water" [archive]. CNNMoney.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  72. "China" [archive]. chinadaily.com.cn.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  73. Lui, Kevin. "Chinese Robot Installed Dental Implant Without Human Help" [archive]. Time.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  74. CNBC.com, Andrew Zaleski, special to (6 September 2017). "China's blueprint to crush the US robotics industry" [archive]. CNBC.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  75. "China's textile industry in crisis" [archive]. moneycontrol.com.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  76. Dexter Roberts. "Where Made-in-China Textiles Are Emigrating" [archive]. Businessweek.com.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  77. http://knowledge.insead.edu/economy-China-mining-100608.cfm [archive]
  78. Lou Kilzer, http://www.pittsburghlive.com/x/pittsburghtrib/news/s_790579.html [archive]
  79. "China 'soaring ahead' in nanotechnology research" [archive]. SciDev.Net.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  80. http://www.kpmg.de/WhatWeDo/23632.htm [archive]
  81. http://www.kpmg.com/uk/en/issuesandinsights/articlespublications/pages/china'schemicalssectorbackontrackandreinvigoratedbythesustainabilityagenda.aspx [archive]
  82. http://www.caas.net.cn/engforcaas/intrduction.htm [archive]
  83. Monica Tan, The Diplomat. "China Shuts Down GE Rice?" [archive]. The Diplomat.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  84. "Insight: U.S. barnyards help China super-size food production" [archive]. tribunedigital-chicagotribune. 19 April 2012.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  85. "FAO Fisheries & Aquaculture - Topics" [archive]. fao.org.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  86. , (1 February 2005). "FAO National Aquaculture Sector Overview (NASO)" [archive]. fao.org.CS1 maint: extra punctuation (link)<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  87. http://www.cafs.ac.cn/english/Research-Achievement.html [archive]
  88. http://www.thedailybeast.com/newsweek/2011/04/24/high-quality-dna.html [archive]
  89. "Wild_East_Or_Scientific_Feast_" [archive]. The Economist. 16 January 2010.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  90. "Short Sharp Science: China attempts to halt unproven stem cell therapies" [archive]. newscientist.com.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  91. McMahon, D. S.; Thorsteinsdóttir, H.; Singer, P. A.; Daar, A. S. (2010). "Cultivating regenerative medicine innovation in China". Regenerative Medicine. 5 (1): 35–44. doi:10.2217/rme.09.78 [archive]. PMID 20055687 [archive].<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  92. http://www.chinadaily.com.cn/business/2011-06/28/content_12790544.htm [archive]
  93. http://articles.marketwatch.com/2011-01-14/markets/30792439_1_drug-makers-drug-industry-drug-market [archive]
  94. "China more positive about pharma than many in west - Schwan" [archive]. pharmatimes.com.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  95. Mooney, P. (2010). "China cracks down on counterfeiters". Nature Medicine. 16 (4): 360. doi:10.1038/nm0410-360a [archive]. PMID 20376025 [archive].<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  96. Laurie Burkitt (2 November 2011). "China Police Nab Fake-Drug Ring - WSJ" [archive]. WSJ.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  97. "Frugal_Healing" [archive]. The Economist. 22 January 2011.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  98. Zhang, J.; Mauzerall, D. L.; Zhu, T.; Liang, S.; Ezzati, M.; Remais, J. V. (2010). "Environmental health in China: Progress towards clean air and safe water" [archive]. The Lancet. 375 (9720): 1110. doi:10.1016/S0140-6736(10)60062-1 [archive]. PMC 4210128 [archive]. PMID 20346817 [archive].<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  99. Greg Browder; et al. (2007). "Stepping up - Improving the performance of China's urban water utilities" [archive] (PDF). worldbank.org.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  100. Lu, Z.; Streets, D. G.; Zhang, Q.; Wang, S.; Carmichael, G. R.; Cheng, Y. F.; Wei, C.; Chin, M.; Diehl, T.; Tan, Q. (2010). "Sulfur dioxide emissions in China and sulfur trends in East Asia since 2000". Atmospheric Chemistry and Physics. 10 (13): 6311. doi:10.5194/acp-10-6311-2010 [archive].<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  101. Wines, Michael (25 October 2011). "China Takes Loss to Get Ahead in Desalination Industry" [archive]. The New York Times.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  102. "Dirty Coal, Clean Future" [archive]. The Atlantic.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  103. Leo Hickman (8 March 2011). "China's coal reserves 'will make it new Middle East', says energy chief" [archive]. the Guardian. London.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  104. Bradsher, Keith (10 May 2009). "China Far Outpaces U.S. in Building Cleaner Coal-Fired Plants" [archive]. The New York Times.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  105. Black, Richard (2010-03-26). "China steams ahead on clean energy" [archive]. BBC News. Retrieved 2012-06-25.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  106. "China Nuclear Power - Chinese Nuclear Energy" [archive]. world-nuclear.org.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  107. Deo Maglaya. "China to install over 300 million smart meters by the end of 2015" [archive]. ecoseed.org.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  108. "China Expressway System to Exceed US Interstates, newgeography.com, Feb 10, 2011" [archive]. newgeography.com. 2011-01-22. Retrieved 2012-06-25.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  109. "OICA 2011 statistic" [archive]. OICA. Retrieved 2012-06-25.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  110. Norihiko Shirouzu (16 September 2010). "Auto Makers Join Criticism of Chinese Policy Makers - WSJ" [archive]. WSJ.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  111. "China leading electric vehicle race, study says" [archive]. BBC News. 21 April 2011.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  112. Staff writers (11 May 2008). "Chinese plane business gets wings" [archive]. BBC News. Retrieved 25 June 2011.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  113. China Tracker. "China's Aviation Industry Takes Flight" [archive]. Forbes.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  114. https://www.koreatimes.co.kr/www/news/biz/2012/01/123_102558.html [archive]
  115. "Bloomberg" [archive]. Bloomberg.com.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  116. Benjamin Haas, Chinese make big push into animation, August 17, 2011, Los Angeles Times
  117. Georg Szalai. "DreamWorks Animation to Unveil Landmark Joint Venture in China (Report)" [archive]. The Hollywood Reporter.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  118. "DreamWorks Animation unveils China studio plans" [archive]. latimes.com. 17 February 2012.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  119. Pierson, David; Verrier, Richard (11 April 2012). "Disney, China to join in animation initiative" [archive]. latimes.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  120. "Makers of DMAX Aim to Break IMAX Monopoly" [archive]. cri.cn.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  121. John Garnaut, China has Antarctica in its sights [archive], September 4, Brisbane Times, 2010
  122. http://www.chinare.gov.cn/en/ [archive]
  123. Broad, William J. (11 September 2010). "China Explores a Frontier 2 Miles Deep" [archive]. The New York Times.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  124. The artist's impression shows the basic configuration of the CSS without docked craft and crew airlock module. It is based on a mid-2000s illustration from the website of the China Manned Space Engineering (CMSE) agency [archive]
  125. David Eimer in Beijing (5 November 2011). "China's huge leap forward into space threatens US ascendancy over heavens" [archive]. Telegraph.co.uk. London.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  126. ABC News. "Technology and Science News - ABC News" [archive]. ABC News.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  127. Tania Branigan (20 September 2010). "China could make moon landing in 2025" [archive]. the Guardian. London.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  128. 颜筱箐. "China's growing space industry to become leading force" [archive]. china.org.cn.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  129. https://www.newscientist.com/article/mg21028165.300-china-starts-building-worlds-biggest-radio-telescope.html [archive]?
  130. "Report: Chinese Develop Special "Kill Weapon" to Destroy U.S. Aircraft Carriers - U.S. Naval Institute" [archive]. usni.org.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  131. "China's Space Advances Worry US Military" [archive]. Space.com.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  132. "How China is advancing its military reach" [archive]. BBC News. 18 January 2012.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  133. "Report: China building electromagnetic pulse weapons for use against U.S. carriers" [archive]. The Washingtion Times.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  134. "China's 'eye-in-the-sky' nears par with US" [archive]. Financial Times.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  135. Daniel Ten Kate (18 March 2012). "China's Share of Global Arms Imports Falls, Sipri Says" [archive]. Bloomberg.com.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>
  136. "Is China About to Get Its Military Jet Engine Program Off the Ground?" [archive]. WSJ. 14 May 2012.<templatestyles src="Module:Citation/CS1/styles.css"></templatestyles>

External links[edit]

Other links[edit]

Template:Economy of China